
ASPEN Material Balance & <u>Reaction of Custom Compounds</u>

Shon, Zach, Liz, Brian, Amir, Brendon

Material Balance: The Basics

- Material balances are a prerequisite to many essential calculations when considering process design
- The laws of conservation of mass state that mass cannot be created or destroyed, but can only be transferred
- The familiar general form for a material balance is as follows...

Input - Output + Accumulation + Generation - Consumption = 0

• Common simplifications include steady-state (accumulation = 0) and no chemical reaction (generation = consumption = 0)

Material Balance: Processes

- Batch
 - There is no material exchange during the process itself

• Continuous

• All streams are moving in and out of the system boundaries continuously

• Semi-Batch

- \circ ~ The process has some features of both batch and continuous processes
- Steady-State vs. Unsteady-State
 - In a steady-state process, process variables do not depend on time
 - In an unsteady-state process, some or all process variables change depending on when they are measured

Conventional vs. Non-Conventional Inputs

Conventional

- Pure chemical species
- Represented as molecular components
- Examples:
 - Water
 - Methane
 - Ethanol

Non-Conventional

- Solids that are not pure chemical species
- Not represented as molecular components
- Examples:
 - Coal
 - Biomass (wood, EFB, etc.)

Example Problem

 $C_xH_yO_z \cdot nH_2O + Heat + N_2 + O_2 \rightarrow C_xH_yO_z + nH_2O$ (gas)

Evaporation of moisture in wet coal using a hot gas stream, often containing nitrogen and oxygen

- Feed involves wet coal with 25% water content
- Goal: Dry coal with 0% water content
- Will have 2 separate water percentages
 - Initial water percentage of wet coal
 - Final water percentage of dry coal

Selecting Components for Aspen Simulation

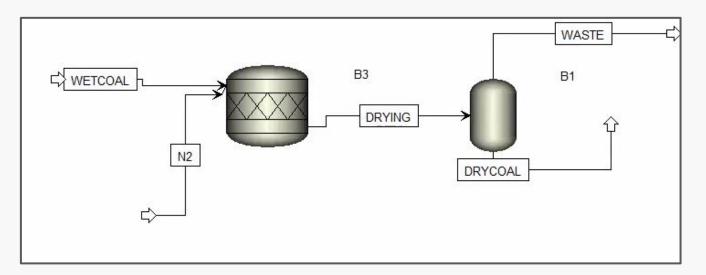
- First step in Aspen produce material balance
- Can change components throughout process
- Able to define your own compound

	Component ID	Туре	Component name	Alias	CAS number
2	WATER	Conventional	WATER	H2O	7732-18-5
Þ	NITROGEN	Conventional	NITROGEN	N2	7727-37-9
Þ	OXYGEN	Conventional	OXYGEN	02	7782-44-7
	COAL	Nonconventional			

Property Methods

- Ideal, UNIFAC, Wilson
- Used to calculate thermodynamic and transport properties
- Have the ability to manually adjust as well

Global	Flowshee	t Sections	Referenced	Comments		
roperty n	nethods & c	options —		Method name		
lethod fil	ter	COMMON	•	IDEAL	Method	s Assistant
Base meth	od	IDEAL	•	Annal .		
lenry com	ponents		•	Modify —		
Petroleur	n calculatio	on options -		Vapor EOS	ESIG	~
		STEAM-TA	•	Data set		1
Water so	lubility	3	•	Liquid gamma	GMIDL	*
				Data set		1 💽
1850 - 10 ⁷⁰	te calculatio	on options		Liquid molar enthalpy	HLMX82	*
Chemistr	y ID		•	Liquid molar volume	VLMX01	~
🚺 Use ti	rue compor	nents		Heat of mixing		
				Poynting correction	1	
				Use liquid reference	e state enthalr	v


Finalize Methods and Properties

- Helps characterize the unconventional solid and calculate the thermodynamic values
- Last step before running simulation
- Proxanal, Ultanal, Sulfanal: proximate, ultimate and sulfur analysis results

Meth	nods - NC Pro	ps ×	+					
0	Property Meth	ods	Comments					
	ponent operty models Model nam		DAL -	nponer	nts ————————————————————————————————————	odes		
	Modernan				option	Joues		
►	Enthalpy		HCOALGEN	•	1	1	1	1
	Enthalpy Density		HCOALGEN DCOALIGT	•	1	1	1	1

Creating the Reactor and Simulation

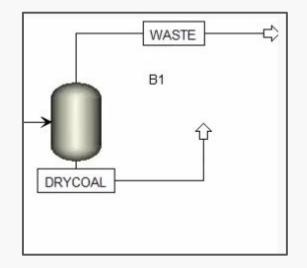
- Various blocks to choose from (PFR, heater, mixer, separator)
- Able to add various streams that are material, heat or water
- Add recycle stream to improve purity or recovery

Defining Feed Stream

- Various values to use
 - Will impact recovery and purity
- Have to manually input the value for each element and attribute (proxanal, ultanal, sulfanal)

J	fications							
State va	ariables —				Co	mposition		
Substre	am name	€NC		•	М	ass-Flow 🔻	kg/hr	
Temper	rature	150	С	•		Component	Value	
Pressure	e	1.1	atm	•	•	COAL		1
Total fl	ow basis	Mass 🔻						
Total fl	ow rate	5000	kg/hr	•		Total		1
-	mponent A	ttribute	•					
omponer								
	-	PROXANAL	-					
ttribute l	-		ue					
ttribute l	D 🤇	PROXANAL	• ue 25					
ttribute l	D 🤇	PROXANAL						
ttribute I	D 🤇	PROXANAL	25					

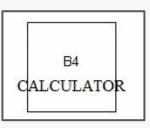
Defining First Reactor Configuration


- Temperature and pressure of reactor is flexible
- Manually enter the equation and stoich
- Purpose is to remove moisture from coal using nitrogen

Re	actions —						
	Rxn No.	Specification type	Molar extent	Units	Fractional conversion	Fractional Conversion of Component	Stoichiometry
Þ	1	Frac. conversion		kmol/hr	0.2	COAL	COAL> 0.0555084 WATER(MIXED)

Main Flowsheet >	< Setup ×	WETCOAL (MA	terial) × 🏹	12 (material) × 🏸 B	3 (RStoic) ×	+	
Specification	s Streams	Reactions	Combustion	Heat of Reaction	Selectivity	PSD	🛛 🥝 Component Attr
Substream ID	⊘ NC	Ŧ					
Component attr							
Component ID	COAL		Elen	nent Value			
Attribute ID	PROXANA	AL -	MOISTU	IRE	1		
			FC				
			VM VM				
			ASH				

Defining Second Reactor Configuration


- Purpose of second block is to separate waste materials from dry coal
- Want a low pressure to be effective and eco-friendly

Calculator Block

- Allows you to import equations to calculate the conversion
- Have to manually put in the variables

Conver	222	H2Oin-H2ODry
Conver	11152	100-H2ODry

Variable	Information flow	Definition					
H20IN		Compattr-Var Stream=WETCOAL Substream=NC Component=COAL Attribute=PROXAN Block-Var Block=B3 Variable=CONV Sentence=CONV ID1=1					
CONVE							
New	Delete Copy	Paste	Move Up	Move Down View Variables			
Edit selected variable							
able CODRY	- Referen	:e		Information flow			
tegory	Туре	Block-Var	-	Import variable			
All	Block:	B3	-	🔍 Export variable			
Blocks	Variable:	COMPATT	- 🗥	🔘 Tear variable			
Streams	Sentence	COMP-ATTR					
Model Utility	ID1:	NC	•				
Property Parameters	ID2:	COAL	•				
Reactions	ID3:	PROXANAL	•				
	Element		1				

Review of Steps

- 1. Select/Input components (conventional and nonconventional)
- 2. Input properties and methods and verify (Ideal, UNIFAC, or Wilson)
- 3. Define feed stream, non-conventional component stream
- 4. Define 1st and 2nd reactor configurations (setup reaction scheme)
- **5. Insert a calculator block** (Allows you to find coefficients)
- 6. Run simulation

Applications

- **Reactor Design** (volume, feed rates, composition of product)
- Separation Processes (distillations, extractions, absorptions)
- **Recycle Streams** (minimizing waste, emissions regulations)
- **Custom Formula Compounds CH_xO_vN_z** (biomass, coal, cells)
- **Calculating Stoichiometric Coefficients** (aC+bH+cO+dN)

THANK YOU

References

- Reid, W.T., & Duzy, F. (1956). Coal Drying Methods and Their Effects on Combustion Performance. Industrial & Engineering Chemistry, 48(2), 249-253.
- Energy Education (2021, March 5). Coal drying process [Video]. YouTube. <u>https://www.youtube.com/watch?v=bVBcbc47TIE</u>
- Aljuhani, N. (n.d.). Material balance. Retrieved from https://faculty.kfupm.edu.sa/che/aljuhani/New_Folder/Material%20 %20balance.pdf
- PDH Online. (n.d.). M239: Introduction to Material and Energy Balances. Retrieved from https://pdhonline.com/courses/m239/m239content.pdf